378 research outputs found

    Factor Analysis for Spectral Estimation

    Full text link
    Power spectrum estimation is an important tool in many applications, such as the whitening of noise. The popular multitaper method enjoys significant success, but fails for short signals with few samples. We propose a statistical model where a signal is given by a random linear combination of fixed, yet unknown, stochastic sources. Given multiple such signals, we estimate the subspace spanned by the power spectra of these fixed sources. Projecting individual power spectrum estimates onto this subspace increases estimation accuracy. We provide accuracy guarantees for this method and demonstrate it on simulated and experimental data from cryo-electron microscopy.Comment: 5 pages, 3 figures; 12th International Conference Sampling Theory and Applications, July 3-7, 2017, Tallinn, Estoni

    The Spectrum of Random Inner-product Kernel Matrices

    Full text link
    We consider n-by-n matrices whose (i, j)-th entry is f(X_i^T X_j), where X_1, ...,X_n are i.i.d. standard Gaussian random vectors in R^p, and f is a real-valued function. The eigenvalue distribution of these random kernel matrices is studied at the "large p, large n" regime. It is shown that, when p and n go to infinity, p/n = \gamma which is a constant, and f is properly scaled so that Var(f(X_i^T X_j)) is O(p^{-1}), the spectral density converges weakly to a limiting density on R. The limiting density is dictated by a cubic equation involving its Stieltjes transform. While for smooth kernel functions the limiting spectral density has been previously shown to be the Marcenko-Pastur distribution, our analysis is applicable to non-smooth kernel functions, resulting in a new family of limiting densities

    Robust Camera Location Estimation by Convex Programming

    Full text link
    33D structure recovery from a collection of 22D images requires the estimation of the camera locations and orientations, i.e. the camera motion. For large, irregular collections of images, existing methods for the location estimation part, which can be formulated as the inverse problem of estimating nn locations t1,t2,…,tn\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_n in R3\mathbb{R}^3 from noisy measurements of a subset of the pairwise directions ti−tj∥ti−tj∥\frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j\|}, are sensitive to outliers in direction measurements. In this paper, we firstly provide a complete characterization of well-posed instances of the location estimation problem, by presenting its relation to the existing theory of parallel rigidity. For robust estimation of camera locations, we introduce a two-step approach, comprised of a pairwise direction estimation method robust to outliers in point correspondences between image pairs, and a convex program to maintain robustness to outlier directions. In the presence of partially corrupted measurements, we empirically demonstrate that our convex formulation can even recover the locations exactly. Lastly, we demonstrate the utility of our formulations through experiments on Internet photo collections.Comment: 10 pages, 6 figures, 3 table

    Disentangling Orthogonal Matrices

    Full text link
    Motivated by a certain molecular reconstruction methodology in cryo-electron microscopy, we consider the problem of solving a linear system with two unknown orthogonal matrices, which is a generalization of the well-known orthogonal Procrustes problem. We propose an algorithm based on a semi-definite programming (SDP) relaxation, and give a theoretical guarantee for its performance. Both theoretically and empirically, the proposed algorithm performs better than the na\"{i}ve approach of solving the linear system directly without the orthogonal constraints. We also consider the generalization to linear systems with more than two unknown orthogonal matrices

    Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM

    Full text link
    We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of Cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations
    • …
    corecore